Files
labFusion/docs/progress.md

178 lines
5.6 KiB
Markdown

# LabFusion Development Progress
## Project Overview
LabFusion is a unified dashboard and integration hub for homelab services, built with a polyglot microservices architecture.
## Architecture Decisions
- **Modular Services**: Each service is independently deployable
- **Polyglot**: Services can use different languages (Java, Python, Go, Node.js)
- **Message Bus**: Redis for inter-service communication
- **Database**: PostgreSQL for persistent data
- **Containerization**: Docker for all services
## Completed Tasks ✅
### Phase 1: Project Structure & Foundation
- [x] **Project Structure Setup** (2024-11-09)
- Created modular `services/` directory structure
- Moved from `backend/` to `services/` for better modularity
- Each service has its own directory with independent Docker setup
- [x] **API Gateway Service** (2024-11-09)
- Java Spring Boot application
- JPA entities for User, Dashboard, Widget, Event, DeviceState
- REST controllers for dashboard management
- PostgreSQL integration
- Redis message bus support
- JWT authentication framework
- [x] **Service Adapters** (2024-11-09)
- Python FastAPI application
- Integration endpoints for Home Assistant, Frigate, Immich, n8n
- Redis event publishing
- Configurable service connections
- Mock data for development
- [x] **Frontend Dashboard** (2024-11-09)
- React application with Ant Design
- System metrics visualization
- Service status monitoring
- Settings configuration
- Responsive design
- [x] **Infrastructure Setup** (2024-11-09)
- Docker Compose for production and development
- PostgreSQL database configuration
- Redis message bus setup
- Environment configuration templates
- [x] **Documentation** (2024-11-09)
- Comprehensive README with setup instructions
- Service-specific README files
- Progress tracking document
- Updated project structure documentation
- [x] **API Documentation Service** (2024-11-09)
- Unified Swagger/OpenAPI documentation service
- Aggregates API specs from all services
- Service health monitoring
- Dynamic spec generation with service prefixing
- Express.js service with Swagger UI integration
- [x] **Enhanced Service Adapters** (2024-11-09)
- Comprehensive OpenAPI documentation with Pydantic models
- Detailed request/response schemas for all endpoints
- Service-specific tags and descriptions
- Enhanced error handling with proper HTTP status codes
- Additional endpoints for better service integration
## Current Status 🚧
### Services Directory Structure
```
services/
├── api-gateway/ # Java Spring Boot (Port 8080) ✅
├── service-adapters/ # Python FastAPI (Port 8000) ✅
├── metrics-collector/ # Go service (Port 8081) 🚧
├── notification-service/ # Node.js service (Port 8082) 🚧
└── api-docs/ # API Documentation (Port 8083) ✅
```
### Infrastructure
- **Database**: PostgreSQL (Port 5432) ✅
- **Message Bus**: Redis (Port 6379) ✅
- **Frontend**: React (Port 3000) ✅
- **API Documentation**: Unified Swagger UI (Port 8083) ✅
- **Containerization**: Docker Compose ✅
## Next Steps 🎯
### Phase 2: Service Implementation
- [ ] **Metrics Collector Service** (Go)
- Implement Docker API integration
- Add Prometheus metrics collection
- Create Redis publishing mechanism
- Add configuration management
- [ ] **Notification Service** (Node.js/TypeScript)
- Implement notification channels (email, webhook, push)
- Create alert rule engine
- Add notification preferences
- Integrate with Redis for event processing
### Phase 3: Real Service Integrations
- [ ] **Home Assistant Integration**
- Implement actual HA API calls
- Add WebSocket support for real-time updates
- Create entity state synchronization
- [ ] **Frigate Integration**
- Implement Frigate API integration
- Add event processing and filtering
- Create detection timeline visualization
- [ ] **Immich Integration**
- Implement Immich API calls
- Add photo metadata processing
- Create asset management features
### Phase 4: Advanced Features
- [ ] **Real-time Updates**
- WebSocket implementation for live data
- Event streaming from Redis
- Frontend real-time UI updates
- [ ] **Data Correlation Engine**
- Cross-service event correlation
- Timeline analysis
- Pattern detection
- [ ] **Authentication & Security**
- JWT token implementation
- User management
- Role-based access control
### Phase 5: Production Readiness
- [ ] **Monitoring & Logging**
- Centralized logging
- Health checks
- Performance monitoring
- [ ] **CI/CD Pipeline**
- GitHub Actions setup
- Automated testing
- Deployment automation
- [ ] **Kubernetes Migration**
- Helm charts
- Kubernetes manifests
- Production deployment
## Development Notes
### Service Independence
Each service is designed to be:
- Independently deployable
- Language-agnostic
- Self-contained with its own dependencies
- Communicating via Redis message bus
### Future Service Additions
The modular structure allows for easy addition of new services:
- **Data Processing Service** (Rust) - For heavy data processing
- **ML Service** (Python) - For machine learning features
- **API Gateway v2** (Go) - For high-performance routing
- **Cache Service** (C++) - For high-performance caching
## Technical Debt
- [ ] Add comprehensive error handling
- [ ] Implement proper logging across all services
- [ ] Add unit and integration tests
- [ ] Create API documentation with OpenAPI/Swagger
- [ ] Add health check endpoints for all services
## Resources
- [Project Specifications](specs.md)
- [Project Structure](structure.txt)
- [Main README](../README.md)